Neural Networks as a tool for parameter estimation in mega-pixel data sets
نویسنده
چکیده
We present a neural net algorithm for parameter estimation in the context of large cosmological data sets. Cosmological data sets present a particular challenge to pattern-recognition algorithms since the input patterns (galaxy redshift surveys, maps of cosmic microwave background anisotropy) are not fixed templates overlaid with random noise, but rather are random realizations whose information content lies in the correlations between data points. We train a “committee” of neural nets to distinguish between Monte Carlo simulations at fixed parameter values. Sampling the trained networks using additional Monte Carlo simulations generated at intermediate parameter values allows accurate interpolation to parameter values for which the networks were never trained. The Monte Carlo samples automatically provide the probability distributions and truth tables required for either a frequentist or Bayseian analysis of the one observable sky. We demonstrate that neural networks provide unbiased parameter estimation with comparable precision as maximum-likelihood algorithms but significant computational savings. In the context of CMB anisotropies, the computational cost for parameter estimation via neural networks scales as N. The results are insensitive to the noise levels and sampling schemes typical of large cosmological data sets and provide a desirable tool for the new generation of large, complex data sets. Subject headings: methods: data analysis — (cosmology:) cosmic microwave background — (cosmology:) cosmological parameters
منابع مشابه
Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کاملPermeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملNeural networks as a tool for parameter estimation in astrophysical data
We present a neural net algorithm for parameter estimation in the context of large cosmological data sets. Cosmological data sets present a particular challenge to patternrecognition algorithms since the input patterns (galaxy redshift surveys, maps of cosmic microwave background anisotropy) are not fixed templates overlaid with random noise, but rather are random realizations whose information...
متن کاملUsing Neural Networks with Limited Data to Estimate Manufacturing Cost
Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...
متن کاملEstimation of the mean grain size of mechanically induced Hydroxyapatite based bioceramics via artificial neural network
This study focuses on the estimation of the mean grain size of mechanically induced Hydroxyapatite (HA) through the artificial neural network (ANN) model. The mean grain size of HA and HA based nanocomposites at different milling parameters were obtained from previous studies. The data were trained and tested by the neural network modeling. Accordingly, all data (55 sets) were based on the mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008